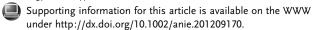
Binary CN Compounds

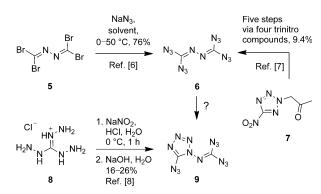
DOI: 10.1002/anie.201209170

Well Known or New? Synthesis and Structure Assignment of Binary C_2N_{14} Compounds Reinvestigated**

Klaus Banert,* Sebastian Richter, Dieter Schaarschmidt, and Heinrich Lang

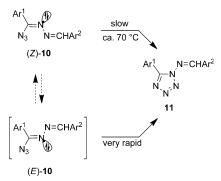
Dedicated to Professor Ernst-Ulrich Würthwein on the occasion of his 65th birthday


Nitrogen-rich organic compounds have gained attention recently because of their high heats of formation and possible applications as highly energetic materials.^[1] However, binary CN compounds such as polyazides $\mathbf{1}$,^[2] $\mathbf{2}$,^[3] $\mathbf{3}$,^[4] and $\mathbf{4}$,^[5] are notorious for their extreme sensitivity towards friction and impact (Scheme 1).


Scheme 1. Polyazides as nitrogen-rich binary CN compounds.

Isocyanogen tetraazide (6) was first prepared from the corresponding tetrabromide 5 in 1961 (Scheme 2). At that time, 6 was the most nitrogen-rich organic compound known. Later, 6 was also synthesized by using the multiple-step sequence $7\rightarrow 6$. The unique product 6 was characterized by elemental analysis, a melting point of $89\,^{\circ}\text{C}$, and more recently by a melting point of $76-77\,^{\circ}\text{C}$ as well as by HRMS, EIMS, and IR spectroscopic data. Up to now, however, structural proof by $^{13}\text{C NMR}$, $^{14}\text{N NMR}$, and $^{15}\text{N NMR}$ spectra and by single-crystal X-ray diffraction has been lacking. In contrast to this, the isomeric compound 9 was characterized by Klapötke et al. so thoroughly that there is no doubt of the monocyclic tetrazole structure. The C₂N₁₄ compound 9, which shows a melting point of $78\,^{\circ}\text{C}$, was prepared from salt 8 by nitrosation followed by "dimeriza-

[*] Prof. Dr. K. Banert, S. Richter
 Technische Universität Chemnitz, Organische Chemie
 Strasse der Nationen 62, 09111 Chemnitz (Germany)
 E-mail: klaus.banert@chemie.tu-chemnitz.de
 Homepage: http://www.tu-chemnitz.de/chemie/org/index.html.en
 D. Schaarschmidt, Prof. Dr. H. Lang
 Technische Universität Chemnitz, Anorganische Chemie
 Strasse der Nationen 62, 09111 Chemnitz (Germany)


[**] We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (BA 903/12-3). Reactions of Unsaturated Azides, Part 32; for Part 31, see: K. Banert, A. Ihle, A. Kuhtz, E. Penk, B. Saha, E.-U. Würthwein, *Tetrahedron* **2013**, *69*, DOI: http://dx.doi.org/10.1016/j.tet.2012.12.054

Scheme 2. Synthesis of the binary C2N14 compounds 6 and 9.

tion" and ring closure. Surprisingly, the heterocycle **9** seems to be more susceptible toward shock and friction than the tetraazide **6**. In general, aromatic tetrazoles are less sensitive than covalent azides. It is even more remarkable that **6** does not spontaneously cyclize to yield **9**. Whereas imidoyl azides such as (*Z*)-**10** are well known to undergo slow ring closure only at higher temperatures owing to their unfavorable stereochemistry, the diastereomeric azines (*E*)-**10**, which have a *cis* orientation of the imino lone pair and the azido group, were postulated to form the tetrazoles **11** very rapidly (Scheme 3). Consequently, immediate cyclization of tetraazido-2,3-diazabuta-1,3-diene (**6**) could be expected and this should actually exclude the isolation of this openchain compound at room temperature.

Scheme 3. Ring closure of azido azines 10.

Herein, we show that the substances isolated in $1961^{[6]}$ and $2009^{[7]}$ and claimed to possess the C_2N_{14} structure of **6** are identical with isomeric tetrazole **9** because the ring closure

 $6\rightarrow 9$ is very rapid at room temperature. Nevertheless, we were able for the first time to characterize 6 by NMR spectroscopic methods when the synthesis was performed at low temperature.

After treating tetrabromide $5^{[11,12]}$ with sodium azide in aqueous acetone at 0°C and workup as described, [6] we exclusively obtained a highly explosive product which showed two signals ($\delta = 148.0$, 159.5 ppm; see Table 1) in the ¹³C NMR spectrum. These data are not compatible with the symmetric structure of 6 but nearly identical with the chemical shifts found for Klapötke's compound 9.[8,13] Thus, we reacted 5 with Na¹⁵N₃ in analogy to get the 12-fold ¹⁵Nlabeled product and strongly convincing proof of the structure with the help of 15N NMR spectroscopy. This method indicated nine signals for three different azido groups and three signals that were assigned to a tetrazole unit (Table 1). Our ¹⁵N NMR spectroscopic data complement the four broad ¹⁴N NMR signals which were observed^[8] for compound 9. Apparently, the tetrazole 9 and not the isomeric tetraazide 6 has been isolated^[14] after treatment of 5 with sodium azide. We assumed that the open-chain compound 6 is a short-lived intermediate that rapidly undergoes cyclization to generate 9.

We confirmed this hypothesis by reacting 5 with an excess of tetramethylguanidinium azide (TMGA) in CDCl₃ or with highly soluble hexadecyltributylphosphonium azide (QN₃)^[15] in CD₂Cl₂ at low temperatures (-56 to -45 °C) and monitoring the reaction progress with the aid of ¹³C NMR spectroscopy (Scheme 4). The successive transformation of 5 into the less-symmetrical substitution products 12, 13, and 14 was observed. Only a single diastereomer was detected in the cases of 12 and 14. In the temperature range of -45 to -38 °C, the increase of a single 13 C NMR signal at $\delta = 146.3$ ppm indicated the formation of the symmetrical tetraazide 6. Further increase of the temperature (-38 to -25°C) led exclusively to the final product 9. By using ¹³C NMR spectroscopy, we were able to roughly estimate the half-life of 6 to be $t_{1/2} < 5$ h at -38 °C although completion of the substitution step 14→6 was always accompanied by partial ring closure $6\rightarrow 9$. The latter process seems to be irreversible because not even traces of 6 can be detected by ¹³C NMR spectroscopy^[16] during analysis of a solution of the C₂N₁₄ compound at room temperature. When such a solution of 9 is cooled, no equilibrium is evident in which 6 can be found.

Br 108.1 Br
$$N_3$$
 N_3 N_3

Scheme 4. 13 C NMR and 15 N NMR (in brackets) δ values of **5** and its products after treatment with TMGA/CDCl₃, QN₃/CD₂Cl₂, or Q¹⁵N=N= 15 N/CD₂Cl₂ at -56 to -35 °C. 13 C NMR spectra were recorded at 100.6 MHz in CDCl₃ (-50 °C for **5**, **12**, and **13**) or CD₂Cl₂ (-45 °C/**14**, -38 °C/**6**, -35 °C/**9**). 15 N NMR spectra were measured at 40.5 MHz in CD₂Cl₂ (-45 °C/**14** or -50 °C for **6** and **9**) with MeNO₂ as external standard.

When **5** was analogously treated with $Q^{15}N=N=^{-15}N$ (49 % ^{15}N labeling in both positions) $^{[15,17]}$ in CD_2Cl_2 , the substitution reactions could also be monitored by ^{15}N NMR spectroscopy. The signals of intermediate **14** indicated three nonequivalent azido groups whereas only two different azido units were exclusively found in the case of **6** (Scheme 4). At higher temperatures, the latter compound underwent rapid ring closure to yield $[^{15}N_8]$ -**9** (Table 1).

Our results demonstrate that the open-chain compound $\bf 6$ is an elusive species, which already undergoes very fast cyclization at $-20\,^{\circ}$ C to afford $\bf 9$. Thus, we were not able to run NMR spectra of $\bf 6$ at $0\,^{\circ}$ C. Consequently, the substances that were isolated at room temperature after treatment of $\bf 5$ with sodium azide or as final product from the reaction sequence

Table 1: Selected NMR spectroscopic data for 9, [15N₈]-9, and [15N₁₂]-9 prepared from 5 and NaN₃, Na¹⁵N=N=15N, and Na¹⁵N₃, respectively.^[a]

9	¹³ C NMR: ¹³ C NMR: ^[b]	δ = 147.77 (s, $(N_3)_2C=N$), 157.71 (s, tetrazole) δ = 148.00 (s, $(N_3)_2C=N$), 159.46 (s, tetrazole)
[¹⁵ N ₈]- 9	¹⁵ N NMR:	$\delta\!=\!-300.11 \text{ (s, N}_\alpha), -274.55 \text{ (s, N}_\alpha), -272.73 \text{ (s, N}_\alpha), -139.37 \text{ (s, N}_\gamma), -133.68 \text{ (s, N}_\gamma), -133.21 \text{ (s, N}_\gamma), -77.06 \text{ (s, tetrazole N4)}, -16.74 \text{ (s, tetrazole N2)}$
[¹⁵ N ₁₂]-9	¹⁵ N NMR:	$\begin{split} \delta &= -300.18 \text{ (dd, } ^1\!J_{N\alpha N\beta} = 14.6 \text{ Hz, } J = 0.6 \text{ Hz, } N_\alpha), -274.78 \text{ (ddt, } ^1\!J_{N\alpha N\beta} = 15.6 \text{ Hz, } J = 1.2 \text{ Hz, } J = 0.8 \text{ Hz, } N_\alpha), -272.96 \\ \text{("dm", } ^1\!J_{N\alpha N\beta} = 15.9 \text{ Hz, } N_\alpha), -150.70 \text{ (dd, } ^1\!J_{N\beta N\alpha} = 15.5 \text{ Hz, } ^1\!J_{N\beta N\gamma} = 5.9 \text{ Hz, } N_\beta), -150.45 \text{ (ddd, } ^1\!J_{N\beta N\alpha} = 15.9 \text{ Hz, } N_\beta), -145.85 \text{ (dd, } ^1\!J_{N\beta N\gamma} = 6.5 \text{ Hz, } N_\beta), -139.35 \text{ (d, } ^1\!J_{N\gamma N\beta} = 6.5 \text{ Hz, } N_\gamma), -133.72 \text{ (dd, } ^1\!J_{N\gamma N\beta} = 5.9 \text{ Hz, } ^2\!J_{N\gamma N\alpha} = 1.1 \text{ Hz, } N_\gamma), -133.30 \text{ (dd, } ^1\!J_{N\gamma N\beta} = 6.2 \text{ Hz, } ^2\!J_{N\gamma N\alpha} = 0.7 \text{ Hz, } N_\gamma), -77.15 \text{ (ddd, } ^1\!J_{N4N3} = 20.3 \text{ Hz, } J = 1.3 \text{ Hz, } J = 0.4 \text{ Hz, tetrazole N4}), -16.89 \text{ (d, } ^1\!J_{N2N3} = 16.2 \text{ Hz, tetrazole N2}), 3.01 \text{ (dd, } ^1\!J_{N3N4} = 20.4 \text{ Hz, } ^1\!J_{N3N2} = 16.2 \text{ Hz, tetrazole N3}) \end{split}$

[[]a] 13 C NMR and 15 N NMR spectra were recorded at 100.6 and 40.5 MHz, respectively, in CDCl₃ at room temperature. δ values in ppm. [b] Recorded in ID₆IDMSO.

starting from $7^{[6,7]}$ cannot have the structure of **6**. Instead, the formation of the isomeric C_2N_{14} compound **9** is now proved for the substitution of **5** and most likely for the product resulting from **7**.

The structures of binary C_2N_{14} compounds such as **6** and **9** should be directly deduced from their spectroscopic data since subsequent reactions to produce less dangerous derivatives can lead to outcomes that are easily misunderstood. For example, treatment of **9** with an excess of cyclooctyne^[18] furnished the cycloadduct **15**, the structure of which was confirmed by NMR data and also by single-crystal X-ray diffraction analysis (Scheme 5, Figure 1). However, **15** is obviously not formed from **6**. We assume that **9** first cycloadds

Scheme 5. Reaction of 9 with cyclooctyne.

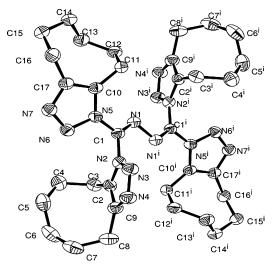


Figure 1. ORTEP view of the molecular structure of 15 (without H atoms) in the solid state, determined by single-crystal X-ray diffraction analysis. Thermal ellipsoids at 50% probability.

three molecules of cyclooctyne. The conversion of electron-releasing azido groups into electron-withdrawing 1H-1,2,3-triazol-1-yl units should shift the tetrazole–azidoazomethine equilibrium^[9c,19] to liberate the fourth azido function, which reacts with cyclooctyne to produce **15**.

In summary, we have demonstrated that the tetrazole $\bf 9$ has been known since 1961 although an alternative synthesis reported in 2011 was claimed to be the first route to this C_2N_{14} compound. ^[8] In 1961 and also in 2009, ^[7] however, it was not recognized that the open-chain tetraazide $\bf 6$ could not be isolated at ambient temperature because it tends to cyclize very rapidly to give the isomeric substance $\bf 9$. Thus, the elusive

binary CN compound 6 was characterized now by NMR spectroscopy for the first time.

Received: November 15, 2012 Published online: February 12, 2013

Keywords: azides · cyclization · nitrogen-rich compounds · NMR spectroscopy · reactive intermediates

- [1] a) H. Gao, J. M. Shreeve, Chem. Rev. 2011, 111, 7377-7436;
 b) A. Hu, F. Zhang Shock, AIP Conf. Proc. 2009, 1195, 809-812.
- [2] M.-H. V. Huynh, M. A. Hiskey, E. L. Hartline, D. P. Montoya, R. Gilardi, Angew. Chem. 2004, 116, 5032 5036; Angew. Chem. Int. Ed. 2004, 43, 4924 4928.
- [3] W. Zheng, N.-B. Wong, X. Liang, X. Long, A. Tian, J. Phys. Chem. A 2004, 108, 840 – 847.
- [4] a) M. H. V. Huynh, M. A. Hiskey, J. G. Archuleta, E. L. Roemer, R. Gilardi, Angew. Chem. 2004, 116, 5776-5779; Angew. Chem. Int. Ed. 2004, 43, 5658-5661; b) M. H. V. Huynh, M. A. Hiskey, D. E. Chavez, D. L. Naud, R. D. Gilardi, J. Am. Chem. Soc. 2005, 127, 12537-12543; c) Y. Zhou, X. Long, Y. Shu, Chin. J. Chem. 2010, 28, 2123-2129; d) E. Keßenich, T. M. Klapötke, J. Knizek, H. Nöth, A. Schulz, Eur. J. Inorg. Chem. 1998, 2013-2016.
- [5] K. Banert, Y.-H. Joo, T. Rüffer, B. Walfort, H. Lang, Angew. Chem. 2007, 119, 1187–1190; Angew. Chem. Int. Ed. 2007, 46, 1168–1171.
- [6] a) C. J. Grundmann, W. J. Schnabel (O.M.C. Corp.), US 2290412,
 1961 [Chem. Abstr. 1961, 55, 25256e]; b) C. Grundmann in
 Houben-Weyl, Methoden der organischen Chemie, 4th ed.,
 Vol. 10/3, Thieme, Stuttgart, 1965, pp. 777 836.
- [7] V. V. Semenov, M. I. Kanischev, S. A. Shevelev, A. S. Kiselyov, Tetrahedron 2009, 65, 3441 – 3445. The authors presented only IR and MS spectroscopic data which did not serve to distinguish between the structures of 6 and 9.
- [8] a) T. M. Klapötke, F. A. Martin, J. Stierstorfer, Angew. Chem. 2011, 123, 4313–4316; Angew. Chem. Int. Ed. 2011, 50, 4227–4229; b) T. M. Klapötke, B. Krumm, F. A. Martin, J. Stiersdorfer, Chem. Asian J. 2012, 7, 214–224.
- [9] a) T. M. Klapötke, *Nachr. Chem.* **2008**, *56*, 645–648; b) G.-H. Tao, Y. Guo, Y.-H. Joo, B. Twamley, J. M. Shreeve, *J. Mater. Chem.* **2008**, *18*, 5524–5530; c) A. Hammerl, T. M. Klapötke, R. Rocha, *Eur. J. Inorg. Chem.* **2006**, 2210–2228.
- [10] A. F. Hegarty, K. Brady, M. Mullane, J. Chem. Soc. Perkin Trans. 2 1980, 535 – 560.
- [11] a) J. Thiele, Justus Liebigs Ann. Chem. 1898, 303, 57-75; b) J. Thiele, Ber. Disch. Chem. Ges. 1893, 26, 2645-2647.
- [12] We utilized Thiele's three-step sequence with isolation of 1,2-di(tetrazol-5-yl)hydrazine instead of the alternative two-step procedure because the final product 5 was significantly purer.
- [13] After consideration of the δ values of **6**, **13**, and **14**, we assigned the ¹³C NMR signals of **9** in a different way than in Ref. [8].
- [14] Caution! The azide 9 is extremely explosive and should be handled only in solution if possible (see also Ref. [8)). Thus, the description of the properties of 6 in Ref. [6a] is misleading. For potential hazards in handling hydrazoic acid and organic azides, see: T. Keicher, S. Löbbecke in *Organic Azides: Syntheses and Applications* (Eds.: S. Bräse, K. Banert), Wiley, Chichester, 2010, pp. 3–27.
- [15] K. Banert, Synthesis 2007, 3431 3446.
- [16] After reaching a signal-to-noise ratio exceeding 40:1 for the ¹³C NMR signals of 9 measured in [D₆]DMSO or CDCl₃, we could not detect the corresponding signal of 6.
- [17] K. Banert, J. Lehmann, H. Quast, G. Meichsner, D. Regnat, B. Seiferling, J. Chem. Soc. Perkin Trans. 2 2002, 126–134.

- [18] Synthesis of cyclooctyne: L. F. Tietze, T. Eicher, Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschungslaboratorium, 2nd ed., Thieme, Stuttgart, 1991, p. 40.
- [19] a) R. N. Butler, Adv. Heterocycl. Chem. 1977, 21, 323-435; b) T. Sheradsky in The Chemistry of the Azido Group (Ed.: S. Patai),

Wiley, London, 1971, pp. 331-395; c) F. R. Benson, The High Nitrogen Compounds, Wiley, New York, 1984, pp. 219-234; R. N. Butler in Comprehensive Heterocyclic Chemistry II, Vol. 4 (Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven), Pergamon, Oxford, **1996**, 621 – 678.